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Abstract. We study the general problem of the friction felt by a spherical solid particle which moves
parallel to the membrane of a spherical vesicle. Experiments are carried out with SOPC vesicles at room
temperature, with different particle and vesicle sizes. Experimental data show considerable finite-size effects
whenever the particle is not very small compared to the vesicle. These effects are found consistent with the
hydrodynamical theory of the vesicle-particle problem. This agreement allows for a “robust” determination
of membrane viscosity, independently of particle and vesicle sizes.

PACS. 68.10.Et Interface elasticity, viscosity, and viscoelasticity – 83.85.Pt Flow computation
(e.g. finite element)

1 Introduction

Phospholipid bilayers are used in a wide variety of exper-
iments as ultimately simplified models of cell membranes.
Much work has been done in the past two decades to quan-
titatively characterize basic mechanical and hydrodynam-
ical properties of model membranes [1]. Among these, the
membrane shear viscosity, ηS, is believed to play a crucial
role in controlling the motion of membrane inclusions [2]
and dynamic cell deformation [3].

Basically, ηS is a macroscopic quantity which can be
defined only on scales much larger than structural details
of the membrane [4]. There have been attempts to esti-
mate membrane viscosities from translational and rota-
tional Brownian motions of molecules in membranes, by
fluorescence or nuclear magnetic resonance techniques [2].
Because of the microscopic character of the probe in these
experiments, such techniques do not allow to measure
a true viscosity but only a microscopic probe-dependent
quantity, sometimes termed a “microviscosity”. Estimates
for different phospholipid bilayers in the fluid state, Lα,
are on the order of 10−7 or 10−6 surface poises (sp) [3,5,6].
A macroscopic technique was proposed by Waugh [3],
whose principle was to pull a filament out of a giant vesi-
cle. Interpretation of experimental data by means of a
model proposed by the author led to estimating shear
viscosities of egg phosphatidylcholine membranes in the
10−6 ÷ 10−4 sp range. The considerable dispersion of re-
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sults was attributed to the multilamellarity of the vesi-
cle preparation. The lower boundary for ηS from Waugh’s
data was about 5× 10−6 sp.

Recently, our group proposed a new method using
a solid microsphere as a macroscopic mechanical probe
to “feel” the viscosity of a fluid membrane [7]. In our
procedure, the lipid bilayer is in the form of a spher-
ical giant vesicle (radius R, 10 ≤ R ≤ 50 µm). The
particle, a polystyrene or glass microsphere (radius a,
0.8 ≤ a ≤ 10 µm) is manipulated by means of an opti-
cal trap and brought in contact with the vesicle. Usually
the particle adheres to the membrane, with a finite con-
tact angle (α), as shown in Figure 1a. If the membrane is
in the fluid state, the particle can still be moved along the
vesicle contour by means of the optical trap. In our exper-
iments, we bring the particle near the top of the vesicle
and release it by switching off the laser beams. Then it
starts moving down, as shown in Figure 1c.

In [7] we showed preliminary results obtained with
polystyrene particles and SOPC (Lα-stearoyl-oleyl-phos-
phatidylcholine) giant vesicles at room temperature. We
measured the friction (ζ) felt by such particles moving
along the surfaces of the vesicles and proposed an approx-
imate procedure to find the value of ηS from that of ζ. This
procedure was based on an adaptation of Danov et al.’s
theory [8] for a spherical particle straddling a viscous film
at the water-air interface, supposed flat and infinite. The
data were restricted to particles about 4 µm in diame-
ter, and whose equilibrium positions were definitely across
the vesicle membrane. This choice was a trade-off between
opposite requirements: the particles were large enough to
follow definite sedimentation paths (see Sect. 2), which
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Fig. 1. (a) Example of a latex par-
ticle attached to a giant SOPC vesi-
cle. The apparent composite struc-
ture of the particle (black and white
circular zones) is an artifact due to
phase contrast microscopy. (b) Def-
inition of particle penetration (see
Eq. (1)). (c) Schematic representa-
tion of a particle trajectory on the
vesicle surface.

allowed for a straightforward determination of ζ. On the
other hand, they were small enough (a/R ≤ 0.1) for the
approximation of a flat infinite interface to be acceptable.
The smallness of the size ratio (a/R) and the fact that
the contact angle was not too far from 90◦ were required
conditions in the adaptation of Danov et al.’s theory.

In this paper, we address the vesicle-particle problem
in the most general way, with no restriction on the par-
ticle size and position. As we will see, the finiteness of
the vesicle size greatly influences the friction felt by large
particles. We interpret our results by means of the full
hydrodynamical theory of the vesicle-particle problem [9]
and arrive at a “robust” (i.e. independent of particle size)
determination of the membrane shear viscosity.

The paper is organized as follows: in Section 2, we
briefly describe our experimental procedure, from sample
preparation to particle path analysis and determination
of particle friction. Results (in terms of measured fric-
tions) obtained with polystyrene particles, from about 1
to 10 µm in radius, and SOPC vesicles at room temper-
ature, are given in Section 3. Section 4 is on theory and
extraction of the membrane shear viscosity from measured
frictions. This section does not dwell deeply on the theory
hardware, which is the matter of a dedicated paper [9].
Instead, we just state the basic assumptions and defini-
tions, and outline the numerical results of direct interest
to our application. Our results (in terms of ηS values) are
discussed in Section 5. Main features of this work are sum-
marized in Section 6.

2 Experimental procedure

2.1 Sample

The vesicles are prepared using the electroformation
method [10], in an optical glass cuvette. Details about the
cell geometry can be found in [11]. Electrodes are made of
two horizontal parallel platinum wires. Electroformation
generates a cluster of vesicles of different sizes. Spherical
giant vesicles are found in the outer region of this cluster.
Such vesicles have their rear sides connected to the cluster
apparently through a few points (hard sphere contacts) or,
in some cases, by definite contact zones. These show up in
the microscope image as zones of low curvature and high
contrast.

We select a giant vesicle for experimenting with a mi-
crosphere. In general, we eliminate vesicles containing well
visible substructures (smaller vesicles or lipid aggregates).
An unusually large contrast of the vesicle contour is an
indication of multilamellarity and results in rejection too.

After a vesicle has been selected, a small volume of
a latex particle suspension (again see [11] for details) is
injected far (about 20 mm) from the electrodes. There, a
particle is picked up by means of a long-working-distance
optical trap [12] and is conveyed to the cluster region.
Before contact with the cluster, we perform a calibration
experiment to measure the particle friction in bulk water
(ζ0), following the procedure described in Section 2.2. Af-
terwards, the particle is brought in contact with the outer
side of the selected vesicle, near the vesicle “equator” (see
Fig. 1c). As described in [11], the particle jumps out of the
optical trap and adheres to the lipid membrane. Usually,
it stabilizes itself across the vesicle contour with a finite
contact angle (α). Adhesion dynamics may feature differ-
ent steps [11], but after equilibrium has been reached α
takes on a constant value (see Fig. 1a). This value is not
universal, as it depends much on the initial vesicle tension
and the nature of the particle surface. Since SOPC mem-
branes are fluid at room temperature, the particle can be
moved along the vesicle surface by means of the optical
trap. We release it at some point (θ0, ϕ0) (see Fig. 1 for
the definition of polar angles) by switching off the laser
trap. Afterwards, the particle starts moving, under the
influence of gravity and thermal agitation.

The intersection of the vesicle contour with the particle
defines a contact line. Experiments carried out by Dietrich
et al. [11] on “3-body” systems, either a particle with 2
vesicles or 2 particles on a single vesicle, indicate that
the contact line is “pinned” [13] to the particle surface.
A consequence of contact-line-pinning is that the particle
cannot move radially (α is constant) and can rotate only
around the radial axis (R̃ in Fig. 1c). Rolling motion, i.e.
around an axis perpendicular to R̃, is forbidden.

The particle-vesicle configuration can be defined by α,
but we prefer to measure the penetration (Z) of the par-
ticle across the membrane, because this is the parameter
most directly felt by the experimentalist. Z is defined by:

Z = 1− CM

a
, (1)
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Fig. 2. Examples of particle tra-
jectories. (a) Heavy particle (a =
5.9 µm, R = 32.1 µm, Pe = 35 000).
(b) Brownian particle (a = 0.8 µm,
R = 18.3 µm, Pe = 50). (c) The
heavy particle path is well fitted
to by the sedimentation equation
(Eq. (3) in text). (d) Statistical
analysis of the Brownian particle
path.

where CM is the distance between the plane containing
the membrane-particle contact line and the particle cen-
ter (see Fig. 1b). CM is positive when C is exterior to the
vesicle and negative otherwise. Z varies between 0 and 2.
These limits correspond to the particle being tangent to
the vesicle, externally and internally, respectively. Z = 1
means that the particle center is exactly on the vesicle con-
tour. Z is measured within ±5% for the largest particles
(a ≈ 10 µm). The error increases much when a decreases:
with small particles (a ≈ 1 µm), we cannot do better than
discerning outside (0 ≤ Z ≤ 1), medium (Z ∼= 1) and in-
side (1 ≤ Z ≤ 2) particle positions.

2.2 Particle trajectories

2.2.1 Recording

The sample is observed from above through the upper mi-
croscope objective of the optical trap [12], either in am-
plitude or phase contrast. Images are captured by a CCD
camera and digitized (8 bits at video rate). A focussed
image of a latex particle features a bright central zone. A
tracking software (I2S) determines the coordinates (x, y)
of the center of mass of this zone every 4 video frames. The
error in x or y is about ±0.2 µm [14]. Basically, we record
a projection of the particle path in the vesicle equatorial
plane. It is not possible to automatically track a particle
from top to bottom of a giant vesicle, because it progres-
sively gets out of focus when loosing altitude. For this
reason, it is necessary to re-adjust the vertical position
of the sample cuvette a few times during particle motion;
the full sedimentation trajectory is obtained by assem-
bling the corresponding recorded tracks. Two examples of

trajectories are shown in Figures 2a and 2b, for a large
(a = 5.9 µm) and a small (a = 0.8 µm) particle, respec-
tively. There is very few Brownian noise in Figure 2a. The
large particle essentially follows a meridian of the vesicle:
this is an example of a nearly pure sedimentation path.
Conversely, the path in Figure 2b is dominated by Brow-
nian excursions, i.e. particle diffusion.

2.2.2 Analysis

In the pure sedimentation limit, the particle trajectory is
the solution of the simple mechanical equation of motion:

m̃g sin θ = ζR̃
dθ
dt
· (2)

Here m̃g is the particle weight corrected for buoyancy, θ
is the polar angle defined in Figure 1c, t is the time and
R̃ is the distance between the vesicle and particle centers.
Inertia is neglected because of the very small sizes and
velocities involved in experiments. Equation (2) is easily
integrated in spherical coordinates and gives:

f [θ(t)] = f (θ0)− t

τ
, (3)

where τ = R̃ζ/m̃g is the characteristic time of sedimenta-
tion and f (θ) = a tanh(cos θ).

Figure 2c shows the distance of the particle to the z
axis, d = R̃ sin θ, as a function of time, for the example of
Figure 2a. The solid line is obtained by fitting equation (3)
to the experimental points. The agreement is excellent and
gives τ = 14.7 s within ±1.5%.
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The relevant quantity for membrane viscosimetry is
the ratio of ζ, the friction felt by the particle bound to
the vesicle, to the reference friction, ζ0 = 6πηa in bulk
water (η is the viscosity of water). In the calibration ex-
periment, we measure the sedimentation velocity of the
particle in bulk water: vS = m̃g/ζ0. The procedure is as
follows: after particle release from the optical trap at time
t0 and altitude z0, the sample cuvette is moved vertically
(lifted up) to bring a different plane, z1, in focus [15].
We measure the instant t1 at which the particle passes
through this plane, and repeat the procedure for different
planes. We thus build z(t), the particle sedimentation tra-
jectory in bulk water. A linear fit then gives vS = dz/dt.
With a large particle, such as that in Figure 2a, vS is mea-
sured within ±0.5%. In this example, ζ = ζ/ζ0 = vSτ/R̃ is
found = 1.3.

In the case of a small particle (Fig. 2b), large Brownian
excursions make the determination of τ and vS very dif-
ficult, if not impossible. The friction is more conveniently
found from the particle translational diffusion coefficient,
D, through the Einstein relation, D = kBT/ζ (here kB is
the Boltzmann constant and T is the absolute tempera-
ture). Let ∆ϕi = ϕ−ϕi and ∆θi = θ−θi be the excursions
of the particle position around a point (θi, ϕi) of the tra-
jectory in a time interval ∆t. We expect:

〈(∆θ)2〉 = 〈[(sin θ)∆ϕ]2〉 =
2D
R̃2

∆t, (4)

in the ∆t→ 0 limit. In equation (4), the averages are cal-
culated on a single path, by summation on the ensemble
of couples (∆θi, ∆ϕi) corresponding to a given ∆t [16].
Figure 2d shows the result of this analysis for the exam-
ple of Figure 2b. Both second order moments, 〈(∆θ)2〉
and 〈(sin θ∆ϕ)2〉 converge to a common linear behavior
for ∆t ≤ 1 second, giving D = 0.16 (µm)2/s. In the cali-
bration procedure, we observe the Brownian motion of the
particle in bulk water. We analyze the horizontal excur-
sions in the same way, to find the reference diffusivity D0:

〈(∆x)2〉 = 〈(∆y)2〉 = 2D0∆t (5)

in the ∆t → 0 limit. For small particles, about 1 µm
in radius, D0 and D are found within ±5%. The rela-
tive friction, which is simply ζ = D0/D, is thus measured
within ±10%.

The two examples shown in Figure 2 correspond to
a “heavy” (Fig. 2a) and a Brownian (Fig. 2b) particle.
In Figure 2a, the motion is driven essentially by g, with a
small thermal noise. The motion in Figure 2b is essentially
thermal noise, with a slow drift caused by g. For particles
of intermediate sizes (a ≈ 2 µm), both mechanisms influ-
ence much the particle motion. When the particle moves
in a homogeneous unbounded medium (bulk water in our
situation), the average particle path, 〈r(t)〉, coincides with
the sedimentation path, zS(t) = vS(t − t0) [17]. In other
words, averaging results in decoupling sedimentation and
Brownian motion, which makes the measurement of vS

straightforward. When the particle motion is restrained
to the surface of a sphere, the situation is more com-
plex because the average path, which we may define as

〈f [θ(t)]〉, does not coincide with the sedimentation path,
fS(t) (given by Eq. (2) right-hand side) [7,18]. In prac-
tice, this means that equation (2) cannot be fitted to the
particle mean path whatever θ in general. Fortunately,
〈f [θ(t)]〉 coincides approximately with fS(t) near θ = π/2
(the vesicle equator), provided that the particle be “heavy
enough” [7,18]. The particle “heaviness” is measured by
the parameter Pe = m̃gR̃/kBT , which is the Peclet num-
ber in our problem. We find that τ can be found within a
few percent using equation (2) whenever Pe ≥ 100. With
latex particles, this means a ≥ 2 µm. With smaller parti-
cles, analysis of the Brownian motion (Eq. (3)) is prefer-
able because the experimental error on D is smaller than
that on τ .

3 Results

We measured reduced frictions, ζ, for particle radii be-
tween 0.8 and 10 µm and vesicle radii between 12 and
53 µm. Results are shown in Figure 3a as ζ versus Z, for
different R/a ratios. Results for ingested particles (Z = 2)
are outlined in Figure 3b.

Values of ζ range from about (1.2± 0.1) to (3.4± 0.1).
In spite of a large scatter, examination of the graphs leads
to identifying two main trends:

– Particle much smaller than the host vesicle (sayR/a ≥
7 in Fig. 3a): the particle feels a small increase in
hydrodynamic drag between water and the situation
across a vesicle membrane. The excess friction, ζ

exc
=

ζ − 1, is about 0.3 (within ±30%), with no obvious
dependence on the particle penetration. There is only
a slight increase of ζ near Z = 2.

– Large particles (say R/a ≤ 7 in Fig. 3a): in this case,
the friction depends very much on Z. When the parti-
cle is outside the vesicle (Z ∼= 0), ζ is about the same as
with small particles. But ζ is considerably larger (up to
about 3.5) in the opposite situation of an ingested par-
ticle (Z ∼= 2). This tendency obviously increases when
R/a decreases, as shown in Figure 3b for the case of
ingested particles.

To summarize, we observe that ζ is minimum when the
particle is very small compared to the vesicle size, indepen-
dently of the penetration. Larger particles feel the finite
size of the vesicle in the form of a larger friction. This
finite-size effect increases much when the particle pene-
trates more into the vesicle interior.

4 Data inversion

4.1 Small particles

The a/R → 0 limit corresponds to a spherical particle
straddling a flat infinite viscous interface, in contact with
a 3-dimensional viscous fluid on both sides. In Figure 4,
we term this situation the W-W case.

In [8] (which we will refer to as DADL), Danov et al.
solved this kind of problem for a particle across a film at



R. Dimova et al.: Falling ball viscosimetry of giant vesicle membranes: Finite-size effects 593

 

������

������

������

������

������

������

��� ��� ��� ��� ���

���5�D ���YDOXHV
�����

������

�

�

�

�

� � � � � �

]

Z R/a

(a) (b)

]

Fig. 3. Experimental results. (a) Reduced particle friction versus penetration. Sketches below the graph show the Z = 0, 1
and 2 positions for constant a and R. The data set is split in 2 subsets: small particles (filled squares) and large ones (open
triangles). The top solid line is just a guide to show the increase in ζ with Z. The bottom line is ζth(Z) in the R/a→∞ limit
for E = 1 (see Sect. 4.2). (b) Reduced friction for fully penetrated particles (Z = 2), versus the vesicle-particle size ratio. Large
particles (left end of the graph and sketch below) feel a much larger friction than small ones (at right). The solid line is just a
guide to the eye.
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Fig. 4. Particle across a flat infinite viscous film. When the
contact angle is 90◦, simple symmetry allows to find the par-
ticle friction in the case of a membrane (WW) from that with
a film of half thickness at the water-air (WA) interface.

the water-air interface (denoted W-A or A-W in Fig. 4).
Air in this context is a fluid of negligible viscosity, like
vacuum. In DADL theory, the contact angle is supposed
constant and particle rolling motion is forbidden. The film
is infinitely thin, supposed to remain flat during particle
motion and the interfacial material (surfactant molecules)
is not allowed to slip along the solid particle surface. In
other words, surfactant molecules in contact to the parti-
cle surface are just stuck to the particle and then do not
participate to the membrane flow.

The results of DADL can be applied directly to our
problem (W-W) when Z = 1 (α = 90◦), on the basis
of the simple superposition scheme sketched in Figure 4.
We denote h the thickness of the membrane, which we
assimilate to a 2-d fluid. In terms of particle friction, the
W-W case in Figure 4 is just the superposition of the W-
A and A-W situations, with a film of thickness h/2. This
statement can be formulated as:

ζWW(h) = 2ζWA(h/2), (6)
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Fig. 5. The function Λ(x), for a spherical particle across a
viscous film and a 90◦ contact angle, in log-log representation.
See equation (8) for definition.

for Z = 1. In DADL, the film is characterized by two
dimensionless numbers:

E =
ηS,F

ηa
and K =

ηD,F

ηa
, (7)

where ηS,F and ηD,F are the film (F) shear and dilation
viscosities, respectively. Here we follow the definitions of
surface quantities for instance by Edwards et al. [19]. Note
that surface viscosities have the dimension of a volume
viscosity multiplied by a length. Other authors (e.g. [20])
prefer to denote such quantities as ηmh, where ηm, either
ηm,S = ηS/h or ηm,D = ηD/h, has the dimension of a
bulk viscosity. For our application (lipid bilayers), we will
consider the film as incompressible, and then put K = 0.
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It is useful to define a background friction, ζ0,WA =
3πηa for Z = 1, and ζ0,WW = 6πηa, and an excess fric-
tion ζexc = ζ − ζ0. Following the notation introduced by
Saffmann and by Hughes et al. [20], we define the function
Λ such that:

ζexc
WA = 4πηaΛ

(
ηa

ηS,F

)
, (8)

for Z = 1. Since the surface viscosity of the membrane,
ηS, is just twice that of the film, equations (6, 8) give:

ζexc
WW = 8πηaΛ

(
2ηa
ηS

)
(9)

or

ζ
exc

WW =
4
3
Λ

(
2ηa
ηS

)
, (10)

for Z = 1, as we told. Figure 5 shows a log-log plot of
the function Λ(x), which we built using DADL theory for
K = 0. The plot is nicely fitted to by a simple power law:

Λ(x) ∼= 0.22x−0.9, (11)

in the range 0.005 ≤ x ≤ 5. With ηS ≈ 3 × 10−6 sp (we
anticipate our final result), the lower boundary (0.005)
corresponds to a sphere about ten times larger than the
membrane thickness (h ∼= 4 nm). Going to smaller particle
sizes would not make sense. DADL theory does not apply
to particle sizes on the order or smaller than h (this is so
for instance in experiments by Cheung et al. with submi-
cron particles in thick soap films [21]). Equations (9,11)
yield:

ζexc
WW
∼= 2.93ηS

(
ηa

ηS

)0.1

· (12)

It is interesting to compare this result to that of Hughes
et al. [20] for the friction of a disk of radius a in the same
membrane:

ζDisk
∼= 4πηS

1

ln
(
ηS

ηa

)
− γ

, (13)

when ηa/ηS � 1. In equation (13), γ is Euler’s constant
(= 0.577 . . . ). Equation (13) shows that ζDisk depends very
few on the disk size, which appears only through a loga-
rithmic correction. As well known, this rather paradoxi-
cal result is the consequence of the nearly 2-dimensional
character of the membrane-disk problem [20]. As the
membrane-sphere problem is nearly 2-d too, we arrive at a
similar result, not surprisingly. Equation (13) is an exact
analytical result, which is valid in the ηa/ηS → 0 limit.
Conversely, equation (12) is not an exact expression, but
just an approximate representation of a numerical result
in a limited range (0.005 � ηa/ηS � 5). Equations (12,
13) have the common characteristic that ζexc

WW and ζDisk

depend essentially on ηS, while the dependence on a is just
marginal. Nevertheless, notice that equations (12, 13) are

quantitatively different, which means that Saffman’s the-
ory for a disk cannot be used to interpret data for spherical
particles (much larger than h, as we told).

We may apply equation (12) to points in Figure 3a
corresponding to small particles (R/a > 7) well across
the vesicle contour (Z ∼= 1). Reduced frictions are about
1.3 for a ∼= 1 µm, which gives ηS

∼= 2× 10−6 surface poise
(sp). As we explained in Section 2, the error on ζ for small
particles is about ±10%. This results in about ±30% for
the above value of ηS.

4.2 General

Values of ζ for large particles are more accurate, but,
as commented in Section 3, they are very sensitive to
the finiteness of the vesicle size. To interpret our data
in general, we use the recent theory worked out by Danov
et al. [9] for the motion of a spherical particle bound to a
finite-size vesicle, and which we will refer to as DDP. Here
we will just state the main physical assumptions made in
DDP and which are of direct relevance to our problem.
The readers interested in the hardware of the theory are
referred to Danov et al.’s article [9].

In the same spirit as in the original DADL theory,
the contact angle in DDP is supposed constant and parti-
cle rolling motion is forbidden. In the general theory, the
particle moves along the surface of the vesicle, which is
supposed to remain spherical (radius R). The fact that
the particle motion does not distort the vesicle shape is
ensured whenever the vesicle excess area is not too large.
Experimentally, we observe that this condition is satisfied
with electroformed vesicles. Basically, we see no definite
alteration of the vesicle equator shape. Moreover, the ade-
quateness of equation (3) to describe the recorded particle
trajectories is a good check that the above hypothesis is
correct. On the whole, the supposed constancy of the vesi-
cle spherical shape is correct only within the amplitude of
the thermally excited shape fluctuations. As the vesicles
used in our experiments have very small excess areas, this
amplitude is � R, and then is negligible in the context of
our problem.

The theory regards the membrane as a single 2-
dimensional fluid, i.e. velocity gradients within the mem-
brane and perpendicular to it are forbidden. This means
that the theory ignores the possibility for the two mono-
layers constituting the real membrane to slip relatively
to each other. Another assumption is that the membrane
material cannot slip along the solid particle surface. This
assumption, together with the supposed constancy of the
contact angle and the forbidding of particle rolling mo-
tion are in line with the experimental observation that
the membrane-particle contact line is pinned [11]. With
the assumptions made in the model, essentially the above
mentioned no-slip condition and the description of the
membrane as a single film, the membrane molecules which
can move relatively to the particle are only those outside
of the contact line, i.e. those belonging to the spherical
surface of radius R. In this context, it is not necessary to
know how lipids cover the particle surface, in other words,
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what is the wetting configuration [11]. Indeed, this is a
great simplification.

Coming back to the real system, involving a bilayer in-
stead of a single film, one might make an objection to the
theoretical scheme: we may reason assuming the simplest
configuration, i.e. partial wetting of the particle surface
by the membrane [11]. In this situation, only one mono-
layer (the outer monolayer of the vesicle membrane, say
monolayer 1) is in contact with the particle. Only the lipid
molecules pertaining to 1 are locked to the particle surface.
The lipid molecules pertaining to the other monolayer, say
2, are free to diffuse and, then it is possible that mono-
layer 2 slips along the particle surface (coated by lipids of
1). In fact, a simple quantitative argument shows that this
degree of freedom does not play a significant role in our
problem. The argument is based on estimating the friction
force, Fslip, which this slip mechanism would produce on
the particle. Fslip is on the order of bSa2V , where bS is the
coefficient of viscous friction between two lipid monolay-
ers [22] and V the particle velocity. From literature data
[6,22], we may put bS ≈ 106 dyn s cm−3. The correspond-
ing dimensionless friction coefficient, ζslip = bSa

2/6πηa, is
found ≈ 103, at least. Since ζ, both in experiments and
from the theory (see below), is between 1 and 4, we con-
clude that the slip mechanism has a negligible influence
on the particle motion. Thus one may view the bilayer as
a single film, as we proposed.

Let us go on with the model. The vesicle-particle sys-
tem is supposed isolated in space. The friction, ζ, is de-
fined as in equation (2), supposing an external force (grav-
ity in Eq. (2)) acting on the particle. The hydrodynamic
equations in DDP are similar to those in DADL, but here
the phases on both sides of the membrane are made of the
same fluid, supposed incompressible and Newtonian (vis-
cosity η). The vesicle membrane is modeled as a 2-d New-
tonian fluid, whose viscous properties are characterized
by E = ηS/ηa and K = ηD/ηa. The velocity field (v) fol-
lows the usual Stokes equation in both 3-d media and the
Stokes-Boussinesq equation in the membrane [19]. Follow-
ing the same procedure as in DADL, equations are written
in a special curvilinear coordinate system, which allows to
transform the initial 3-variable problem (v and the pres-
sure, P , depend on 3 space variables) into a 2-variable (x1,
x2) one. Hydrodynamic equations in the (x1, x2) space
are solved numerically using the so-called “alternating-
direction-implicit method” [23,24]. The procedure yields
the v and P fields everywhere in the system, from which
the hydrodynamic drag force and torque acting on the
particle are computed. Input parameters of the numerical
code are E, K, R/a and Z.

In this work, the code was run on a Digital Alpha 3500
workstation. Computing time depends on the values of
input parameters and, of course, on the required numerical
accuracy. For instance, with E = 2, K = 0, R/a = 5 and
Z = 1, it took about 2 hours of CPU time to find ζ within
±1%. Bringing Z close to 0 or 2 makes the computation
extremely long (about 48 hours for Z = 1.95, other inputs
unchanged).
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Fig. 6. Theoretical friction ratio in the limit of an inviscid
vesicle membrane (E = K = 0). Finiteness of the vesicle size
results in large friction values for large particles, even in the
case of a non viscous membrane.

Figure 6 shows results corresponding to E = 0, K = 0,
i.e. a perfectly inviscid membrane. For very large size ra-
tios (R/a = 50, 100), the particle feels nearly no excess
friction (ζ ∼= 1), which is what one might expect intu-
itively. But with smaller vesicles (R/a ≤ 10), ζ is found
definitely > 1: the effect considerably increases when the
particle penetrates more into the vesicle and when R de-
creases. This is exactly the tendency which we observed
experimentally (Fig. 3). The physical reason for the aug-
mented friction is the fact that the portion of the parti-
cle inside the vesicle moves in a finite volume. Looping
of streamlines inside the volume necessarily increases dis-
sipation. This kind of “re-circulation” effect [25] is obvi-
ously highest with a fully penetrated particle (Z = 2), but
still present when the particle is tangent externally to the
vesicle contour (Z = 0), because some flow is still excited
inside the vesicle through the membrane.

To interpret our data quantitatively, we computed the-
oretical values of the reduced friction, ζth, corresponding
to all experimental parameters, R, a and Z, for different
values of ηS (we kept K = 0 as before). The bottom solid
curve in Figure 3a represents ζth(Z) in the R → ∞ limit
for a = 3 µm, ηS = 3× 10−6 sp (this example corresponds
to E = 1). Clearly this curve fits to the base of the data
cloud, where all points correspond to particles about a
micrometer in radius. Notice that the curve is nearly flat
(except near to Z = 0 or 2), which is what one might
expect since the R → ∞ limit brings us back to the 2-d
problem of the flat infinite membrane.

For a general comparison of computed frictions to ex-
perimental ones, ζexp, we plotted the ratio of excess fric-
tions, ρ =

(
ζexp − 1

)
/
(
ζth − 1

)
versus the size ratio R/a.

Results are shown in Figure 7. In this representation, the
ρ = 1 line is the master curve where all points should
merge, if the model is correct and if a proper value of the
adjustable parameter, ηS, has been chosen. Two sets of
points are represented, corresponding to ηS = 3× 10−6 sp
(filled symbols) and 7× 10−6 sp (open circles).
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Fig. 7. Comparison of experimental (ζexp) to computed (ζth)

frictions, for different size ratios. ρ(ζexp − 1)/(ζth − 1). Filled

triangles correspond to ηS = 3 × 10−6 sp and open circles to
ηS = 7× 10−6 sp. Arrows show the change in ρ between the 2
values of ηS, for different size ratios.

5 Discussion

A striking result of the above analysis is that ρ values
do not gather on the master line, within experimental er-
ror and whatever the value of ηS. The obvious conclusion
is that the experimental systems are more complex than
assumed in the theory. One may infer different kinds of
complication, which we already briefly hinted at in Sec-
tion 2.1:

(i) bi- or even multi-bilayer membranes;
(ii) substructures (smaller vesicles, filaments...) attached

to vesicle membranes;
(iii) uncontrolled connections to other vesicles nearby.

One may easily predict that any of these complica-
tions will increase the value of ζ above that of the ideal
system. Hopefully, one may bet that at least a few among
our samples were close to ideal and that they correspond
to minimal frictions. If this analysis is correct, the ideal
systems should be found at the bottom of the data cloud
in Figure 7, along the ρ = 1 line. Since there is no re-
lation between particle size and vesicle ideality, ideal sys-
tems, if not exceptional, should be found for very different
R/a ratios, and then define a rather straight horizontal
boundary at the bottom of the data cloud. This is our
criterion to decide what value of ηS best fits to our data.
Clearly, ηS = 3× 10−6 sp does well, while the other value,
7× 10−6 sp does not.

To explain the anomalies in the data set, we have to
estimate the impacts of the above listed complications on
particle friction:

(i) Multilamellarity: in 82, Waugh [3] pioneered the field
of lipid membrane viscosimetry with a technique
based on pulling a filament out of a vesicle. Anal-
ysis of his data set led him to estimating only a lower
boundary of the surface viscosity, ηS,min, exactly as
in our case. Waugh argued that the multi-layer struc-
tures of most his vesicles were the reason for the very

large scatter (up to a factor of 30) of ηS values above
ηS,min. We doubt that this explanation hold in our
situation, because the presence of many multi-layer
vesicles would be signed by a quantification of fric-
tions. Notice that most of anomalously large frictions
are found with large particles (small R/a ratios), for
which the accuracy in ζ is highest. A discretization
of ρ would be beyond experimental error and then
visible in the graph. There is nothing such in Fig-
ure 7. However note that the absence of a visible dis-
cretization of ρ does not mean that all our vesicles
were unilamellar. We just state that multi-lamellarity
alone cannot explain the distribution of ρ values in
Figure 7.

(ii) Substructures : this argument does not hold more.
The reason is that localized defects on the membrane
should show up as accidents on the particle trajecto-
ries. Again with large particles, sedimentation trajec-
tories span a very large domain in θ and nothing like
an anomalous localized slowing down was detected.
Trajectories were conform to equation (3), i.e. each
particle felt a spatially uniform viscosity.

(iii) Connections to other vesicles: such connections may
prevent the vesicle to which the particle is attached
from rotating as a whole. Overall rotation is permit-
ted in DDP theory and is a reality in experiments
with large particles. This can be realized very simply
as follows: suppose that the membrane be extremely
viscous, say like a gel in which the particle is trapped.
In this situation, the particle just acts as a marker of
the vesicle motion. The particle trajectory is the so-
lution of the following equation:

m̃gR̃ sin θ = ζrot
dθ
dt
· (14)

Here ζrot is the rotational friction coefficient of the
(solid) vesicle-particle complex. For simplicity we
may suppose the complex to be spherical, which
amounts to supposing Z = 2. In this case, ζrot is
simply equal to 8πηR̃3 [25]. Note that equation (14)
is equivalent to equation (3), with a particle reduced
friction ζ∞ = 4R/3a (here the subscript ∞ means
ηS →∞).

The value of ζ∞ is relevant to estimate the importance
of vesicle overall rotation in the general situation of a finite
viscosity. With small particles (sayR/a > 10 in our exper-
iments), ζ∞ is considerably larger than ζ: in this case, the
picture of the particle shearing the membrane of a glob-
ally immobile vesicle is correct. Membrane flow does not
propagate far out of the particle position, and then con-
nections on the rear side of the vesicle do not influence the
particle motion. With large particles, ζ∞ remains larger
than computed values of ζ for finite viscosities (as one
might expect, since ζ → ζ∞ when ηS →∞), but their or-
ders of magnitude become comparable. For instance, with
R/a = 2, ηS = 3× 10−6 sp, we find ζ = 2.5 and ζ∞ = 2.7.
This means that a large particle both shears the mem-
brane and makes the vesicle rotate as a whole. This is
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Fig. 8. Same data as in Figure 7 for ηS = 3×
10−6 sp. Analysis in terms of vesicle connectiv-
ity: open circles correspond to nearly “ideal”
vesicles (example shown in photo 1), aster-
isks to “connected” spherical vesicles (photo 2)
and filled triangles to strongly adhered vesicles
(photo 3).

the theoretical scenario, for an ideal system. In a real sys-
tem such as in the above example, anything which may
hinder vesicle rotation will considerably influence the par-
ticle trajectory. In practice, the presence of contacts to
nearby vesicles may be enough to explain the anomalous
values of ρ in Figure 7.

In the experiment, it is not possible to directly view the
contacts between a spherical vesicle and the surrounding
ones. The microscope image just shows contours of nearby
vesicles which intersect that of the selected one. We may
simply bet that the multiplicity of overlapping contours is
an indication of the abundance of contacts. We used this
rough criterion to discern 2 categories of spherical vesicles
in our data, according to their degrees of entanglement
with neighbors, or, equivalently, to their degrees of exter-
nality relatively to the cluster. Ideal or nearly ideal vesicles
(open circles in Fig. 8 and insert photograph 1) are almost
free of intersections with neighbor contours; there is even
an example of a vesicle which was completely detached
from the cluster. In the intermediate category (asterisks
and photograph 2), the selected vesicle is partially em-
bedded in the cluster; only the outer portion of the vesicle
contour is free of overlaps with neighbors. There is a third
category (filled triangles and photograph 3) in Figure 8,
which corresponds to vesicles which were non spherical
because their rear sides were apparently flat and stuck to
the platinum electrode. Figure 8 clearly shows a corre-
lation between anomality in ρ and non ideality: highest
values of ρ are found with large particles and vesicles of
the above-defined second and third categories. This cor-
relation definitely supports our view that vesicle rotation
hindrance is the cause of the problem.

6 Conclusion

We studied the problem of falling-ball viscosimetry of gi-
ant vesicle membranes, with different particle (a) and vesi-

cle (R) sizes. A major goal of this study was to determine
a value of the membrane shear viscosity (ηS) that might be
termed “robust”, i.e. independent of a and R. We experi-
mented on SOPC at room temperature, with polystyrene
particles of different sizes, for 0.03 ≤ a/R ≤ 0.5. The
friction (ζ) felt by each particle moving on a vesicle sur-
face was determined either from its Brownian motion or
from its sedimentation path, depending on the value of
the Peclet number.

Experimental results showed that the particle motion
was considerably slowed down when the particle was large
and penetrated more inside the vesicle. This finding is well
in line with the prediction of the recent hydrodynamical
theory of the vesicle-spherical particle problem [9]. Ac-
cording to theory, the finiteness of the vesicle size has a
twofold effect:

(i) ζ is increased by the re-circulation flow inside the
vesicle;

(ii) the possibility for the vesicle-particle complex (sup-
posed ideal, i.e. isolated in water) to rotate as a whole
keeps ζ within an upper bound, ζ∞, on the order of
R/a.

We found that both (i) and (ii) are important in our
experiments with large particles. Some of the measured
frictions were found > ζ∞, from which we concluded that
the overall rotation of the corresponding vesicles was hin-
dered by connections to neighbors.

Data inversion by means of DDP theory [9] led us
to selecting a subset of “ideal” vesicles, ideality meaning
no indication of multi-layer structure or of overall rota-
tion hindrance. This subset covers the full range of parti-
cle sizes, from about 1 to 10 µm, and is consistent with
ηS = 3 × 10−6 sp, the value announced in the prelimi-
nary work by Velikov et al. [7] with small particles (a ∼=
4 µm). This value is in line with other estimates of model
membranes viscosities obtained from other techniques
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(see the introduction), in so far as only an order of magni-
tude comparison is feasible. The error on ηS remains about
±30% whatever a, though the accuracy in ζ is much bet-
ter for large particles than for small ones. In fact the gain
in accuracy for large a is counterbalanced by a decreased
sensitivity of ζ on ηS and by the large scatter due to sys-
tem non-ideality.

A practical conclusion to be drawn from our data for
SOPC is that main artifacts are found with very large
particles, say when R/a ≤ 8. It is then recommendable
to perform viscosimetry experiments with smaller parti-
cles, say a ≤ 0.1R. With very small particles (a ≤ 1 µm),
the procedure to measure ζ involves analyzing Brownian
trajectories and the particle penetration is hardly mea-
surable. But ηS can be found from ζ very simply, using
the approximate procedure described in Section 4.1, pro-
vided that α be not far from 90◦ (Z ∼= 1) [7]. With larger
particles (a ≈ 2 µm or more), ζ is measured most di-
rectly from sedimentation paths and particle penetrations
are well resolved in microscope images. But finite-size ef-
fects, essentially re-circulation, significantly increase ζ. In
this case, extracting the value of ηS implies computing ζth
with the full hydrodynamical theory.

A final – but not least – remark is that whatever the
chosen procedure, an absolute value of ηS can be found
only from a statistical analysis of data from many different
vesicles.
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